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Purpose and Motivations for the Airborne Patrol Against DPRK ICBMs

Summary

The DPRK has demonstrated missiles with near-ICBM range and tested underground nuclear or thermonuclear explosives of yield estimated
to be 100 or even 250 kilotons—comparable in yield to many of the current U.S. strategic warheads. Although there is not evidence that the
DPRK has mastered the technology of a ruggedized warhead and reentry vehicle that would survive the 60 G deceleration and heating of
atmospheric reentry at ICBM range, they could do so in time.

Itis also not clear that any of the DPRK’s nuclear weapons can yet be carried to ICBM range, but that also is only a matter of time.

We sketch here an "Airborne Patrol System to Destroy DPRK ICBMs in Powered Flight" incorporating the well established MQ-9 Reaper
(Predator B) remotely piloted aircraft (RPA), The Big Wing version of the MQ-9 has a loiter time of some 37 hours at 500 miles from its
airbase in South Korea or Japan, carrying two Boost-Phase Intercept missiles assembled of available rocket motors, e.g., from Orbital ATK.
A two-stage rocket would provide 4 km/s, with a 75 or 55 kg homing payload providing an additional 2.0 or 1.5 km/s divert velocity, and
carrying a 25 kg seeker that would home optically on the booster flame and the ICBM's hard body.

All of the technologies needed to implement the proposed system are proven and no new technologies are needed to realize the system .
The baseline system could technically be deployed in 2020, and would be designed to handle up to 5 simultaneous ICBM launches.

The potential value of this system could be to quickly create an incentive for North Korea to take diplomatic negotiations seriously and to
destroy North Korean ICBMs if they are launched at the continental United States.

The proposed Airborne Patrol System could be a “first-step system” that can be constantly improved over time. For example, we have
analyzed the system assuming that interceptors have a top speed of 4 km/s with a 25 kg seeker. We believe that faster, or lighter and
smaller interceptors can be built that would increase the firepower of the system and possibly its capability against somewhat shorter range
ballistic missiles like the Nodong — which poses a threat to Japan.

Since the Airborne Patrol System would be based on the use of drones that would loiter outside of North Korean airspace, the electronic
countermeasures needed to defeat distant surface-to-air missile defenses would be easy to implement because of the long-range between
the drones and the air-defense radars.

The availability of relatively inexpensive high-payload long-endurance drones will also improve, along with the electronic countermeasures
systems to protect them.




Key Patrol System Elements
e Ballistic Missile Targets to Be Engaged
Attack Interceptors
e Platforms for Attack Interceptors

North Korean Missiles and Satellite Launch Vehicles that
Can Be Destroyed After Launch at Will
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Estimated Weight and Propulsion Characteristics of 4+ Km/Sec Airborne Interceptor
that Uses Achievable Rocket Motor Technologies

Attack Interceptor with Kill Vehicle that has AV=2 km/sec

400m
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Total Weight = 660 kg

and Additional 2km/sec Divert Velocity

Total Weight = 500 kg

4

05m

Interceptor with 25 kg Optical and Homing Paylo

Interceptor with 25 kg Optical and Homing Payload
and Additional 1.5km/sec Divert Velocity

Total Weight of Interceptor 1449.43 Ibs (657.34 kg) Total Weight of Interceptor 1082
Payload Weight 165.38 Ibs ( 75.00 k,S Payload Weight
Speed at Burnout 4.00 km/s Speed at Burnout
First Stage Motor Weight 959.84 Ibs (435.30 kg First Stage Motor Weight
Flrst Stage Propellant Welght 767.87 Ibs (348.24 kg First Stage Propellant Weight
First Stage Structural Weight  191.97 Ibs ¢ 87.06 kg Flrst Stage Structural Welght
First Stage Structure Factor 0.20 First Stage Structure Factor
First Stage Specific Impulse 270 sec First Stage Specific Impulse
First Stage Burnout Speed 2.00 kn/s First Stage Burnout Speed
Second Stage Motor Weight 324.22 Ibs (147.04 kg Second Stage Motor Weight
Second Stage Propellant Weight 259.37 Ibs (117.63 kg Second Stage Propellant Weight
Second Stage Structural Weight 64.84 Ibs ( 29.41 kg, Second Stage Structural Weight
Second Stage Structure Factor 0.20 Second Stage Structure Factor
Second Stage Specific_Impulls 270 sec Second Stage Specific Impulse
Second Stage Burmout Speed 2.00 kn/s Second Stage Burmout Speed
Thrust Level of First Stage 20446.79 Ibs (9272.92 kgF) Thrust Level of First Stage

i Thrust BurnITime of First Stage

e

Thrust BurnITlme of First Stage 10,
ve

Thrust Le

of Second Stage
Thrust Burn Time of Second Stage 15.21 sec
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Attack Interceptor with Kill Vehicle that has AV=1.5 km/sec

%0 Kg)

716.68 Ibs (325.03 kg
573.34 lbs (260.02 kg]
143.34 lIbs ( 65.01 kg
0.20
270 sec
2.00 km/s
242.08 Ibs (109.79 kg,
193.67 Ibs ( 87.83 kg
48.42 Ibs ( 21.96 kg
0.20
270 sec
2.00 kn/s
15266.93 Ibs (6923.78 kgF)

10.14 seconds
3437.93 Ibs (1559.15 koF)

e 15.21 secor
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Trajectories that Can be Flown by Interceptor with 25 Second Acceleration Time

and 4 km/sec Burnout Speed
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Relatively Inexpensive Drone that Is Already Available and Tested*

Baseline MQ-9 Wing
66 ft=20.1m
MQ-9 Big Wing
79ft = 24.1m

Drone-Based Systems for Post-Launch Precision Tracking
to Support Interceptor Homing

System Precision Tracking on Drones

e Each deployed interceptor carrying drone available for stereo viewing of boosting targets

o Focal plane array operating in the 3-5 micron wavelength band for above cloud tracking

o Focal plane array operating in the 0.5-2.2 microns wavelength band for see-to-the ground detection

o Small field-of-view focal plane array video in the visible wavelengths for tracking and kill assessment

Homing Sensor on Interceptor

o Focal plane array operating in the 3-5 microns wavelength band for long-range homing

o Megapixel visible or near-infrared focal plane array for accurate long-range images
of target body

¢ Laser illuminator and lidar for endgame target details and range-to-target data




Geographical and Military Factors
Relevant to the Deployment and Operation
of the Attack System

Directions to Different Target Cities or Military Bases for the Hwasong-12
or Hwasong-14 Long-Range Missiles
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Distance Travelled by Hwasong-12 and Hwasong-14
During the First 150 Seconds of Powered Flight
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Distance Travelled by UpgradedHwasong-14 Second Stage
During the First 190 Seconds of Powered Flight (40 Seconds After Staging))
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200 km
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Powered Flight and Initial Coast Trajectories of the First Stage and Payload of

an Upgraded Hwasong-14 North Korean ICBM*
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* The upgraded Hwasong-14 assumes a second stage that uses four vernier motors from the R-27 SLBM. The actual Hwasong-14 tested on July 4 and July 28, 201(‘:[
only two vernier engines and has an upper stage powered flight time twice as long as the presumed “upgraded” Hwasong-14 shown here.

Early Powered Flight and Initial Coast Trajectories of the First Stage and Payload of

an Upgraded Hwasong-14 North Korean ICBM*
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Interceptor Lethal Engagement Range against the Hwasong-12
or the First Stage of the Hwasong-14 Is About 320+ Kilometers

Hwasong 14 ICBM with Fast Burning Liquid Second Stage
135 Seconds rather than 233 Second
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* The upgraded Hwasong-14 assumes a second stage that uses four vernier motors from the R-27 SLBM. The actual Hwasong-14 tested on July 4 and July 28, 201T
only two vernier engines and has an upper stage powered flight time twice as long as the presumed “upgraded” Hwasong-14 shown here.

Shoot-Down Capabllities Against
ICBMs and Satellite Launch Vehicles
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Interceptor Lethal Engagement Range against the Hwasong-12
or the First Stage of the Hwasong-14 Is About 285+ Kilometers
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Interceptor Lethal Engagement Range against the Hwasong-14
During Early Powered Flight of Its Second Stage Is About 390+ Kilometers
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* The upgraded Hwasong-14 assumes a second stage that uses four vernier motors from the R-27 SLBM. The actual Hwasong-14 tested on July 4 and July 28, 201?1
only two vernier engines and has an upper stage powered flight time twice as long as the presumed “upgraded” Hwasong-14 shown here.




Interceptor Lethal Engagement Range against the Hwasong-14
During Early Powered Flight of Its Second Stage Is About 390+ Kilometers

Moscow

IMPORTANT'ASSUMPTION:
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Drone Patrol Patterns against the Hwasong-14
Intercept of Its Second Stage During Early Powered Flight Is About 390+ Kilometers
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Drone Patrol Coverage against the Hwasong-14
Intercept of Its Second Stage During Early Powered Flight Is About 390+ Kilometers
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Impact Areas of the Hwasong-14 Debris after Being Hit
at Different Times After Launch
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Impact Areas of the Hwasong-14 Debris after Being Hit
at Different Times After Launch

: 20 Secont
+  Completing Po!
Flight 265 sec

Drop Area
for Missile Attacks
Against East Coast of
the Continental US
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APPENDIX

Capabilities in War
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If War Starts — GO IN AFTER THE NODONGS!
Interceptor Lethal Engagement Range against the North Korean Nodong

IMPORTANT ASSUMPTION:

Satellite Early Warning Provides Sufficientg
Information for Interceptor Launch within *
40 Seconds of Target Missile Launch -

200 km Distance
65 Sec After
Interceptor Launch

APPENDIX

A Key Enabling Technology

Near Instantaneous Launch Detection and
Tracking from Satellites
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The Space-Based Infrared Satellite (SBIRS) Geosynchronous Spacecraft

S-Band Earth ,
Antenna (Lll’]kS 4) 22 C€11 NIH

Battery

Deployable
Light Shade

2-Panel Tri-Junction
GaAs Solar Arrays

Dual Band Gimbaled
Spot Beams
(Links 1, 2, 3)

Payload
Enclosure

3-Color IPR Payload; Short Schmidt
Telescopes with Dual Optical Pointing
(Scanner and Starer)

Omni Antenna
(Links 5, 6)

2l

Satellite Features
« A2100 derived spacecraft, 12-year design life, 9.8-year MMD
* ~10,000-1b predicted wet weight at launch
» 3-axis stabilized with 0.05 deg pointing accuracy:; solar flyer attitude control
* RH-32 rad-hardened single board computers with reloadable flight software
« ~2800 watts generated by GaAs solar arrays
*  GPS receiver with Selected Availability Secure Anti-Spoof Module (SAASM)
* ~1000-1b infrared payload: scanning and staring sensors
— 3 colors: short-wave, mid-wave, and see-to-ground sensor-chip assemblies
— Short Schmidt telescopes with dual optical pointing
— Agile precision pointing and control
— Passive thermal cooling
« Secure communications links for normal, survivable, and endurable operations

100 Mbs data-rate to ground
~500+ Ib Infrared Sensor Payload: Scanning and Staring Sensors
SWIR~2.69-2.95 pm, MWIR~4.3 um, and 0.5-2.2 um (see-to-ground)
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Nearly Identical to Iranian Shahab 3, Pakistani Ghaury, and North Korean Nodong

Satellites Only See Hot Rocket
Exhaust. They Cannot See
Rocket After the
Rocket-Motor Stops

NOTE:

Thedetectors on the'satellite
could see a lighted match at
100.to 200 miles.range
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http://www.air-and-space.com/20050914%20VAFB%20Minuteman.htm

Transient Infrared Signal
When Solid Propellant
Minuteman Il
Rocket is Launched
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Transient Infrared Signal
When Liquid Propellant Safir Satellite Launch Vehicle
Was Being Launched

T=0.00 Seconds “ce=% T=0.00 Seconds T=0.48 Seconds

- T=1.56 Seconds T=2.04 Seconds * T=2.44 Seconds
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Optical/Short Wave Infrared Observations of Missiles in Powered Flight
Above and Below Heavy Cloud Cover

Missile Above
Clouds

. Missile
\ ~ Contrail
Missile Below '
Clouds

High Spatial Centroid Determination Achieved by Dithering and/or Pixel-to-Pixel Intensity Interpolation
Achievable Sensitivity Against Sun Backgrounds ~ 10+ to 106
Achieved by Frame-to-Frame Subtraction and by Temporal Signal Variations at Ignition and During Powered Flight
Even DSP Could Easily See Aircraft and SCUD Signals Against Backgrounds (~ 20 kW/sr in-band)

MODTRAN 4 Transmission Calculation
2 km Thick Cumulus Cloud
Zoom in on Previous

Effects of increasing optical depth
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wavelength (unm)

Good cloud transmission bands from 0.5-2.2 um
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Effects of Atmospheric Aerosol Load

(scattering and absorption)
(no clouds)
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Short-Wave Infrared Missile Launch Signals (2.7 pm) from the DSP Satellites during the Gulf War
of 1991 show that SCUD Ballistic Missiles Were Detectable within 20 Secondss of Their Launch

Today’s Capabilities with the Space-Based Infrared System (SBIRS)
Allows for Detection of Missile Launches within A Few Tenths of Seconds after Engine Ignition

Signals from SCUD that Would Have
Been Observed If There Was NO
Atmospheric Absorption of the Short
Wave Infrared Emission from the
Rocket Plume

E] o
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DSP Satellites in
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US Declassified Data on Peak In-Band Infrared Intensities of the

First Stages of Russian and US Ballistic Missiles
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Intensity-Time Histories of Russian and US Ballistic Missiles
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APPENDIX

Interceptor Performance Tradeoffs Are
Very Flexible for a Fully Optimized System

41

Trajectories that Can be Flown by Interceptor with 25 Second Acceleration Time
and 5 km/sec Burnout Speed

Interceptor Trajectory and Time
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Altitude (km)

Downrange (km)
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Total Weight of Interceptor =1316.47 Ibs (597.04 kg); EKV Weight=73.78 Ibs ( 33.54 kg); Speed at Burnout=5.00 km/s
Advanced Homing and Control System Weight=73.78 Ibs ( 15 kg); EKV Divert Velocity=1.5 km/s



Potential Weights and Burnout Speeds for Interceptors with Kill Vehicle that has a
2 km/sec Divert and 15G Acceleration at Homing Endgame

Baseline Kill Vehicle Assumes Homing and Homing Guidance and Control Section Weighs 25 kg
Potential Increase in Burnout Velocity for a Kill Vehicle of the same weight but lighter Homing Homing Guidance and Control Section scales as follows:

V,

New

1/3
~ Vox{ W, } where V, = 4km/sec and W, = 25kg

New

Examplel: Baseline Interceptor that propels to 4 km/sec a KV capable of 2km/sec divert and Maximum Endgame Acceleration of 15 G Weighs ~650 kg. What would be the
potential burnout speed of an interceptor of roughly the same total weight that had a Homing Guidance and Control Section that weighs 12.5 kg (Wnew=12.25 kg)

rather than 25 kg (Wo=25 kg)?

v 3
V,x Wo — 4km/secx _25kg =4x [2]1/3 =4x1.26 ~ 5km/sec
12.25kg

New

Baseline Kill Vehicle Assumes Homing and Homing Guidance and Control Section Weighs 25 kg and with a burnout velocity of 4 km/sec
Potential Increase potential total weight of different interceptor with same burnout velocity and Kill Vehicle with same divert velocity and peak endgame acceleration but lighter
Homing Guidance and Control Section scales as follows:

= Interceptor Weightox{%} where Interceptor Weight, = 650kg and W, = 25kg

0

Interceptor Weight,,,

Example2: Baseline Interceptor that propels KV capable of 2km/sec divert and Maximum Endgame Acceleration of 15 G to 4 km/sec a KV Weighs ~650 kg. What could be the
total weight of a different interceptor with the same burnout velocity and Kill Vehicle divert and acceleration characteristics with a Homing Homing Guidance and

Control Section that weighs 12.5 kg (Wnew=12.25 kg) rather than 25 kg (Wo=25 kg)?

. . W, 12.5kg
Interceptor Weight,. = Interceptor Weight, x| —% | = 650kgx | ——= | =325k
p ONyey p g 0X|: W :| g><|: 25kg :| g

0
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APPENDIX

Survival of Drones Against Long-Range
Surface-to-Air Missile Attack is Assured by
Fully Tested Electronic Countermeasure
Technologies
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Proven Technology: Uses Digital Radio Frequency Memories to Retransmit

Drones Protected by Towed Electronic Decoys

Homing Missile Signal Causing Interceptors to Home on Decoy

Raceiver

-

i Transmitter
Alrcraft =-AMNASQ-23% AN/AFG-B1

I | Transmitter ightj v

Transmitter
Anftennae

T-168TA/ALE-T0 (V) Fiber Optic Towed Decoy

TWT to
3 RF
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Relatively Inexpensive ECM Countermeasures Can Be Used in
Standoff Patrols to Protect Drones from Surface-to-Air Missile Attack

Potential VHF —
Radar Detection
Ranges Without
Jamming Against
a Drone Carrying
Missiles on External

Detection Range [NMI]
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Data from Russian / PLA Low Band Surveillance Radars: http://www.ausairpower.net/APA-Rus-Low-Band-Radars.html




North Korean Air Force Fighters that Could Theoretically
be a Threat to the Airborne Patrol

North Korean Combat Aircraft

Aircraft Origin Type Variant In service Notes

MiG-29 Russia multirole 85

MiG-21 Soviet Union fighter 26

MiG-23 Soviet Union fighter-bomber 56

Sukhoi Su-7 Soviet Union fighter-bomber 18

Sukhoi Su-25 Russia attack 34

Shenyang F-5 People's Republic of China fighter 106 derivative of the MiG-17
Shenyang J-6 People's Republic of China  fighter F-6 97 license built MiG-19
Chengdu J-7 People's Republic of China fighter E-7 120 license built MiG-21

47

North Korean Air Force Fighters that Could Theoretically
be a Threat to the Airborne Patrol

ntroduced in 1970)

pr—

MiG-298, (Introduced in 1982) _ N ’_ _ ‘—MiG-23 {

34 Aircraft 97 Aircraft 106 Aircraft

SU-25 (Introduced in 1981) Shenyang J-6 (=<MiG-19; Introduced in 1955)

Shenyang F-5 (=MiG-17; Introduced in 1952)
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North Korean Surface-to-Air Missile Able to Engage the Airborne Patrol

The SA-5 Gammon is the Only North Korean Air-Defense Interceptor that Could Reach Airborne Patrol Drones

Name Origin Type In service
SAM
S-200 Soviet Union SAM system 75 missiles
S-125 Neva/Pechora Russia SAM system 300 missiles
S-75 Dvina Soviet Union SAM system 1950 missiles
SA-7 Russia MANPADS 4000 units

The North Korean S-200 Surface-to-Air Missile System Acquisition, Height Finding and
Engagement Radars are All Mechanical Scanning and Vulnerable to Standoff Jamming

" PRV-17 Odd Pair Heighrﬁndiné Radar

Almaz K-1V/M / 5N62 Square Pair FMCW Engagement Radar
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The Effects of Standoff Jamming on the North Korean S-200
Surface-to-Air Missile System Acquisition and Height-Finding Radars

Target Without Standoff Jamming Support ~ Target With Standoff Jamming Support
T L

5l

Implementation of Standoff Jamming Against the North Korean S-200
Surface-to-Air Missile System Acquisition and Height-Finding Radars

Standoff
Target Protected Jammer

Mechanically Scanning %ﬁ {; C_/‘M
Acquisition Radar Antenna __E ------- Ll é@g

...... Standoff
Jammer

Target Protected
é@@ D
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