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REACTOR-GRADE AND WEAPONS-GRADEPLUTONIUM IN
NUCLEAR EXPLOSIVES

Virtually any combination of plutonium isotopes—the different forms of
an element having different numbers of neutrons in their nuclei—can be
used to make a nuclear weapon. Not all combinations, however, are equally
convenient or efficient. The most common isotope, Pu-239, is produced
when the most common isotope of uranium, U-238, absorbs a neutron and
then quickly decays to plutonium. It is this plutonium isotope that is most
useful in making nuclear weapons, and it is produced in varying quantities in
virtually all operating nuclear reactors.

As fuel in a reactor is exposed to longer and longer periods of neutron
irradiation, higher isotopes of plutonium build up as some of the plutonium
absorbs additional neutrons, creating Pu-240, Pu-241, and so on. Pu-238
also builds up from a chain of neutron absorptions and radioactive decays
starting from U-235.1 Because of the preference for relatively pure Pu-239
for weapons purposes, when a reactor is used specifically for creating
weapons plutonium, the fuel rods are removed and the plutonium is
separated from them after relatively brief irradiation (at low "burnup"). The
resulting "weapons-grade" plutonium is typically about 93 percent Pu-239.
Such brief irradiation is quite inefficient for power production, so in power
reactors the fuel is left in the reactor much longer, resulting in a mix that
includes more of the higher isotopes of plutonium ("reactor-grade"
plutonium).

Use of reactor-grade plutonium complicates bomb design for several
reasons. First and most important, Pu-240 has a high rate of spontaneous
fission, meaning that the plutonium in the device will continually produce
many background neutrons. Second, the isotope Pu-238 decays relatively
rapidly, thereby significantly increasing the rate of heat generation in the
material. Third, the isotope Americium-241 (which results from the 14-year
half-life decay of Pu-241 and hence builds up in reactor-grade plutonium
over time) emits highly penetrating gamma rays, increasing the radioactive
exposure of any personnel handling the material.

In a nuclear explosive using plutonium, the plutonium core is initially
"subcritical," meaning that it cannot sustain a chain reaction. Chemical high
explosives are used to compress the plutonium to higher than normal
density (so that the neutrons released in each fission have a higher
probability of hitting other atoms and causing more fissions). In a well-
designed nuclear explosive using weapons-grade plutonium, a pulse of
neutrons is released to start this chain reaction at the optimal moment, but
there is some chance that a background neutron from spontaneous fission
of Pu-240
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will set off the reaction prematurely. With reactor-grade plutonium, the
probability of such "pre-initiation" is very large. Pre-initiation can
substantially reduce the explosive yield, since the weapon may blow itself
apart and thereby cut short the chain reaction that releases the energy.
Calculations demonstrate, however, that even if pre-initiation occurs at the
worst possible moment (when the material first becomes compressed
enough to sustain a chain reaction), the explosive yield of even a relatively
simple device similar to the Nagasaki bomb would be of the order of one or a
few kilotons. While this yield is referred to as the "fizzle yield," a 1-kiloton
bomb would still have a radius of destruction roughly one-third that of the
Hiroshima weapon, making it a potentially fearsome explosive. Regardless
of how high the concentration of troublesome isotopes is, the yield would
not be less. With a more sophisticated design, weapons could be built with
reactor-grade plutonium that would be assured of having higher yields.2

Dealing with the second problem with reactor-grade plutonium, the
heat generated by Pu-238 and Pu-240, requires careful management of the
heat in the device. Means to address this problem include providing
channels to conduct the heat from the plutonium through the insulating
explosive surrounding the core, or delaying assembly of the device until a
few minutes before it is to be used.

The radiation from Americium-241 means that more shielding and
greater precautions to protect personnel might be necessary when building
and handling nuclear explosives made from reactor-grade plutonium. But
these difficulties are not prohibitive.

In short, it would be quite possible for a potential proliferator to make a
nuclear explosive from reactor-grade plutonium using a simple design that
would be assured of having a yield in the range of one to a few kilotons, and
more using an advanced design. Theft of separated plutonium whether
weapons-grade or reactor-grade, would pose a grave security risk.

1 For a useful figure showing the buildup of these isotopes as a function of irradiation
time, see J. Carson Mark, "Explosive Properties of Reactor-Grade Plutonium," Science
and Global Security, Vol. 4, no. 1, 1993, pp. 111-128.
2 See W. G. Sutcliffe and T.J. Trapp, eds., Extraction and Utilityof Reactor-Grade
Plutonium for Weapons, Lawrence Livermore National Laboratory, UCRL-LR-115542,
1994 (S/RD). For unclassified discussions, see J. Carson Mark, op. cit.
The Pu-240 content even in weapons-grade plutonium is sufficiently large that very rapid
assembly is necessary to prevent preinitiation. Hence the simplest type of nuclear
explosive, a "gun type," in which the optimum critical configuration is assembled more
slowly than in an ''implosion type" device, cannot be made with plutonium, but only with
highly enriched uranium, in which spontaneous fission is rare. The makes HEU an even
more attractive material than plutonium for potential proliferators with limited access to
sophisticated technology. Either material can be used in an implosion device.
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